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Abstract: The assessment of the muscle invasion of bladder cancer typically plays a crucial 
role in therapeutic decision-making and has significant impacts on the recurrence rate and 
survival rate. Although histopathology is sufficiently accurate and usually served as the gold 
standard for bladder cancer diagnosis, it is invasive, time-consuming, and requires intensive 
sample preparation by a well-trained pathologist to achieve an optimal diagnosis. Therefore, a 
fast and noninvasive method to accurately identify non-muscle-invasive bladder cancer 
(NMIBC) and muscle-invasive bladder cancer (MIBC) is in demand. In this study, the SERS 
technique combined with the PLS-LDA method based on a small amount of blood serum 
samples is employed to distinguish healthy volunteers, NMIBC, and MIBC patients. 
According to the results, the overall diagnostic accuracy is 93.3%. The diagnostic accuracies 
are 97.8% and 93.2% for healthy versus bladder cancer groups and NMIBC versus MIBC 
groups, respectively. Therefore, the proposed method has demonstrated excellent 
performance on accurately identifying muscle invasion of bladder cancer, which can assist 
timely diagnosis and proper treatment for bladder cancer patients. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Bladder cancer is a common urological malignancy involving the urothelium, which has 
become the 10th most common cancer worldwide [1]. In recent years, an estimated 549,000 
new cases of bladder cancer were diagnosed, leading to approximately 188,000 deaths every 
year [2]. At its initial stage, around 70% of patients suffer from non-muscle-invasive bladder 
cancer (NMIBC), whereas the remaining suffer from muscle-invasive bladder cancer (MIBC) 
[3]. NMIBC is confined to the mucosa and/or with invasion only into the underlying lamina 
propria, whereas MIBC typically invades into deeper layers of the bladder, such as muscle, 
bladder wall or other tissues surrounding the bladder [4]. In clinical practice, it has been 
demonstrated that the occurrence of muscle invasion is an important prognostic factor in 
bladder cancer and plays a crucial role in therapeutic decision-making. The gold-standard 
treatment for NMIBC patients is the transurethral resection of bladder tumor, while that for 
MIBC patients is radical cystectomy [5]. The choice of treatment is important, because it has 
significant impacts on the recurrence rate and survival rate of bladder cancer patients. 
Although more than half of NMIBC patients show recurrence within five years after initial 
resections and about 10%-15% of recurrences accompany with features of progression, recent 
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reports have shown that the 5-year survival rate is approximately 90% for NMIBC patients 
[1]. In contrast, a much higher rate of metastatic disease and poor 5-year survival rate of only 
50% are observed among MIBC patients [6]. Therefore, early and accurate identification of 
NMIBC and MIBC is with significant importance for a timely decision on precise treatment 
and therapy, in which the survival rate of bladder cancer patients can be significantly 
improved. 

Currently, the primary clinical methods for evaluating NMIBC and MIBC include 
cystoscopy, bladder imaging and histopathological diagnosis. Cystoscopy is the most 
frequently used method for NMIBC diagnosis, but it is invasive and usually associated with 
patients’ unpleasantness, and it can only offer a relative low diagnostic accuracy of 
approximately 71% [4,7]. Bladder imaging usually restricts its clinical applications due to the 
potential allergy to contrast agents, and its diagnostic accuracy is only around 76% [8,9]. 
Ultrasonography often fails to detect primary tumors of NMIBC due to its low spatial 
resolution and the staging accuracy is only about 78% [10]. Although the development of 
computed tomography (CT) and magnetic resonance imaging (MRI) brings a more accurate 
and sensitive bladder cancer diagnosis, the reported accuracy of CT and MRI for staging 
bladder cancer varies from 55% to 89% [11–14], in which the diagnostic accuracy relies 
heavily on the characteristics of the medical imaging systems and the radiologists’ 
experience. Histopathology is typically served as the gold standard for bladder cancer 
diagnosis. However, it is invasive and time-consuming, in which intensive sample preparation 
by a well-trained pathologist is required to achieve an optimal diagnosis [15]. Although many 
urinary molecular markers such as bladder tumor antigen (BTA), nuclear matrix protein-22 
(NMP22), microsatellite analysis and microRNAs (miRNAs) have been developed in recent 
years [16,17], all those markers are confronted with varying sensitivity, specificity and high 
false positive rate, thus none of them has been accepted as a standard clinical diagnostic 
examination [18]. Therefore, a fast, sensitive and noninvasive diagnostic technique for 
identifying muscle invasion of bladder cancer would be of imperative clinical value, in which 
therapy plans can be made timely and rationally for individual patients. 

Raman spectroscopy is a fast, non-destructive and label-free technique that can provide 
spectroscopic fingerprint information about molecular composition and structure based on the 
measurement of inelastic scattering between monochromatic photons and vibrating 
molecules. In the past two decades, it has demonstrated great potential as a promising 
diagnostic tool for cancer detection, by examination on cell, tissue or body fluid like saliva, 
urine and blood [19]. For those biological samples, surface-enhanced Raman spectroscopy 
(SERS) is often employed to enhance the inherent weak Raman signal [20,21], and a large 
enhancement factor of 105 to 1014 can typically be achieved. The SERS enhancement effect is 
primarily contributed by electromagnetic enhancement and chemical enhancement. The 
former is caused by localized surface plasmon resonance excited on the surface of metal with 
a weak interaction between metal and molecules [22], while the latter is caused by the charge 
transferring between metal and molecules [23]. In particular, SERS measurement on blood 
samples is most frequently used as a label-free and noninvasive method in early cancer 
diagnosis with high sensitivity and shows significant advantages in convenient and repeatable 
collections from patients [24]. Bladder cancer, as one of the highest recurrence rates and the 
most malignant tumors, its early detection, diagnosis and treatment are imperative for optimal 
clinical outcomes. Thus, many studies have been performed on early diagnosis of bladder 
cancer based on SERS technique. Li et.al applied SERS technique on human blood serum to 
classify bladder cancer patients and healthy volunteers with the diagnostic sensitivity of 
90.9% and specificity of 100% [25]. Zhang et.al acquired blood serum SERS spectra from 
healthy volunteers, low-grade and high-grade bladder cancer patients, and the diagnostic 
accuracies of 96.4% and 95.4% were achieved when differentiating healthy subjects versus 
bladder cancer patients and low-grade versus high-grade bladder cancer patients, respectively 
[26]. Although blood serum SERS has demonstrated excellent performance on detecting 
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bladder cancer and identifying low-grade and high-grade bladder cancer patients, the 
characterization of muscle invasion of bladder cancer has not yet been investigated. In clinical 
practice, the occurrence of muscle invasion is one of the most important factors for making 
therapy plans, which has great impact on the recurrence rate and survival rate of bladder 
cancer patients. 

In this study, the blood serum SERS spectra were collected from the mixture of 2µl silver 
colloid and only 2µl blood serum from each healthy volunteer, NMIBC and MIBC patient, 
and significant biochemical changes were observed among those different groups. 
Furthermore, the partial least square (PLS) analysis followed by linear discriminate analysis 
(LDA) was used to distinguish healthy, NMIBC and MIBC patients. Based on the results, the 
overall diagnostic accuracy was 93.3%, and the integrated area under the receiver operating 
characteristic (ROC) curve were 0.987 for healthy subjects versus bladder cancer patients and 
0.983 for NMIBC versus MIBC patients, respectively. Compared to the conventional clinical 
methods, the proposed blood serum SERS method has demonstrated its potential for fast, 
accurate and noninvasive assessment of muscle invasion of bladder cancer; thus, rational 
therapy plans can be made timely and the survival rate of bladder cancer patients can be 
improved significantly. 

2. Materials and methods 

2.1 Blood serum sample collection, preparation and SERS measurements 

In this study, blood serum samples were collected from 30 healthy volunteers and 60 bladder 
cancer patients (including 28 NMIBC cases and 32 MIBC cases) from the department of 
urology in the First Affiliated Hospital of China Medical University. Patients with other 
systemic diseases except bladder cancer have been excluded and the bladder cancer diagnoses 
were made based on the histopathology examinations. Ethical approval was obtained from the 
medical ethics committee of the First Affiliated Hospital of China Medical University, and 
informed consents were signed by all patients in order to perform human blood research. 
After 12 hours of overnight fasting, 3 ml peripheral blood sample was collected from each 
study subject between 7:00-8:00am. The blood samples were then centrifuged at 3000 rpm at 
4◦ C for 10 minutes, and serum was obtained by collecting the supernatant. Then, these serum 
samples were promptly stored at −80°C until SERS measurements were performed. 

For SERS, Lee-Meisel method, i.e. reduction of silver nitrate with trisodium citrate, is one 
of the most frequently used silver colloids synthesis methods. However, the long heating 
duration and large volume solution along with uneven heating sometimes lead to various sizes 
of nanoparticles [27]. In our study, an advanced method by using microwave heating and 
gradually adding trisodium citrate solution into silver nitrate solution was employed for 
synthesizing silver colloids, in which much shorter heating duration is needed and the 
efficiency of SERS enhancement effect can be improved [28,29]. More specifically, 30 mg of 
AgNO3 was dissolved with 150 ml deionized water and heated to boiling. 1 ml trisodium 
citrate solution with a concentration of 1% was slowly added into the solution, and then the 
solution was heated to boiling again. This procedure was repeated 4 times until a total of 4 ml 
trisodium citrate solution was fully added into the AgNO3 solution, and then the silver colloid 
solution was cooled at the room temperature. 4ml silver colloid solution was taken and 
concentrated by centrifugation at 10,000rpm for 8 minutes, discarding 3.5ml of the 
supernatant. Subsequently, 2µl silver colloid was mixed with 2µl blood serum in 1:1 
proportion. Then, the mixture was stirred on an oscillator for five minutes and was incubated 
at room temperature for 2 hours before taking SERS measurements. A drop of the mixture 
was transferred onto an aluminum substrate and air dried for optimal SERS measurements. 
The silver colloidal particles were characterized by transmission electron microscopy (TEM) 
and UV/visible absorption spectroscopy. The TEM photograph of the silver colloid mixed 
with blood serum and the absorption spectrum of the silver colloid are shown in Fig. 1. The 
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silver nanoparticles are spherical with a diameter of approximately 20 to 50 nm, and the 
maximum absorption locates at around 450nm. 

The SERS spectra were obtained with the wavenumbers ranged from 400 cm−1 to 1800 
cm−1 by a confocal Raman microscope (HR Evolution, Horiba JY, France). A 785nm diode 
laser was used as the excitation source, and the SERS spectra were collected with a 20x 
microscope objective lens (NA = 0.40). The integration time was set to 10 s, and the spectral 
resolution was 1 cm−1. Each sample was repeatedly measured five times at different locations, 
including center and edge, and the average spectrum of those five SERS measurements was 
used for further processing and analysis. 

 

Fig. 1. The TEM micrograph of the concentrated silver colloid mixed with blood serum (Left) 
and the UV/visible absorption spectrum of the silver colloid (Right). 

2.2 SERS data preprocessing and analysis 

The SERS spectra were smoothed by Savitzky-Golay algorithm [30] to reduce the noise, and 
the fluorescence background was subsequently estimated by the fifth order polynomial fitting 
and removed from the original SERS spectra [31]. In order to alleviate the impact of the 
variations of Raman peak intensities among different blood serum samples, normalization 
was performed on each SERS spectrum after fluorescence background removal by dividing 
the Raman intensity at each wavenumber by the summation of the Raman intensities at all 
wavenumbers. Hence, only the relative Raman intensities have been taken into account rather 
than the absolute Raman intensities in this study. 

PLS analysis [32], as a dimension reduction methodology, was employed to compress the 
spectral data and the first twenty PLS components (PC) and PC scores were extracted from all 
the blood serum Raman measurements after preprocessing. Thereafter, the number of selected 
PC scores was optimized from the first PC score until the first twenty PC scores to achieve 
better classification performance. More specifically, a two-step scheme classification was 
conducted to first differentiate blood serum SERS spectra into the bladder cancer group and 
healthy group. Then, a second step was further performed to classify those blood serum SERS 
spectra in the bladder cancer group into NMIBC group and MIBC group. The two-step 
scheme can improve the overall classification accuracy by selecting optimal differentiators in 
each step, i.e. the optimal number of selected PC scores. In order to evaluate the proposed 
method in an unbiased manner, leave-one-out cross-validation (LOOCV) method was 
performed on all SERS data [33]. More specifically, an average spectrum corresponding to 
one subject was selected as the test data and the remaining spectra corresponding to the other 
subjects were served as the training data until all the spectra (or subjects) were tested once. 
To further evaluate the performance of the PLS-LDA classification model, the ROC curves 
were generated and the integrated area under the ROC curves (AUC) was used as a 
quantitative indicator to represent the classifier performance [34,35]. 
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3. Results and discussions 

3.1 Evaluating the enhancement effect of silver colloid 

In order to verify the enhancement effect of the silver colloid, SERS spectrum and 
spontaneous Raman spectrum of the same blood serum sample, Raman spectrum of silver 
colloid and Raman spectrum of aluminum foil are collected under the exactly same 
configuration. The Raman intensities in many dominant vibrational bands of SERS spectrum 
are enhanced dramatically compared to those of spontaneous Raman spectrum, and none 
obvious Raman peak is observed in the Raman measurements of silver colloid and aluminum 
foil, as shown in Fig. 2. Therefore, there should be interactions between the silver 
nanoparticles and the blood serum, in which some of the basic biochemical substances of 
blood serum, such as protein and nucleic acid, are being adsorbed onto silver nanoparticles, 
leading to a significant enhancement of Raman signal. By such a method, only 2µl blood 
serum is sufficient to collect optimal SERS measurements, which may benefit its clinical 
applications in bladder cancer diagnosis. 

 

Fig. 2. The comparison of SERS spectrum and spontaneous Raman spectrum of the same 
blood serum sample, Raman spectrum of silver colloid and Raman spectrum of aluminum foil. 

3.2 Biochemical changes of blood serum samples among healthy, NMIBC and MIBC 
groups 

Figure 3(a) shows the average blood serum SERS spectra after fluorescence background 
removal and normalization from healthy, NMIBC and MIBC groups respectively. It can be 
seen that the primary differences of SERS peak intensities between healthy and bladder 
cancer samples are at 494, 589, 639, 725, 812, 887, 1004, 1073, 1093, 1135, 1206, 1330, 
1443, 1581 and 1654cm−1, which can be assigned to different vibrational modes and 
biochemicals (as listed in Table 1) according to the previously published studies [36–38]. 
Furthermore, significant differences of SERS spectra can also be observed between healthy, 
NMIBC and MIBC groups, respectively. It can be seen from Fig. 3 that the L-arginine 
(494cm−1), amide-VI (589cm−1), L-tyrosine (639cm−1), amide-I and α-Helix (1654 cm−1) 
exhibit more intense Raman signals in MIBC group compared with those in the healthy and 
NMIBC groups. These findings suggest that an increase of free amino acids presents in 
patients’ blood serum during the malignancy development, which is consistent with the 
results in the previous studies [39,40]. The reason might be that abnormal vigorous growth 
and proliferation of tumor cells require abundant nutrients and energy, leading to the disorder 
of amino acid metabolism [41], thus increased amino acids are likely a comprehensive effect 
of the protein catabolism [42], the degradation of extracellular matrix and the autophagic 

In
te

n
si

ty
(A

rb
.U

n
it

s)

                                                                      Vol. 10, No. 7 | 1 Jul 2019 | BIOMEDICAL OPTICS EXPRESS 3537 



degradation of preexisting intracellular proteins [43,44]. In addition, it is obvious that the 
peak at 725cm−1 increased substantially in both NMIBC and MIBC groups compared to that 
in the healthy group. This Raman peak corresponds to the C-H bending vibration mode of 
adenine, indicating the abnormal metabolism of DNA and RNA bases in the blood serum of 
bladder cancer patients [37]. Some studies have reported that the DNA concentration in blood 
serum is higher in many types of tumors [45,46], and the concentration of cell-free DNA in 
the blood serum typically increases with tumor progression [47], which may result from the 
necrosis or apoptosis of tumor cells and the release of highly proliferating tumor cells [46]. 
The larger Raman peak of D-mannos (1135cm−1) in the MIBC group demonstrates more 
saccharide in blood serum, which might be due to the disordered glycolysis via the 
tricarboxylic acid cycle [48]. The Raman peak at 1443cm−1 corresponding to saturated fatty 
acids decreases or even disappears in MIBC group, because the rapid tumor cells proliferation 
consumes a large amount of fatty acids to fulfill the demand of cell membrane synthesis and 
energy production [49]. Thus, the depletion of serum fatty acids suggests that the lipids play 
important roles in tumor pathogenesis [50]. Based on the above results, there are significant 
changes of biomolecules in different blood serum groups, thus blood serum SERS 
demonstrates great potential for identifying healthy, NMIBC and MIBC individuals. 

 

Fig. 3. (a) The average SERS spectra after fluorescence background removal and 
normalization from the healthy, NMIBC and MIBC groups, in which the shaded areas 
represent the standard deviations among each group; (b) the subtracted spectra between 
different groups. 
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Table 1. The Assignments of the Raman Peaks with Significant Differences among 
Healthy, NMIBC and MIBC Groups 

Peak position (cm−1) Assignments 
494 Ring vibration, Cellulose, guanine, L-arginine 
589 Ascorbic acid, amide-VI 
639 C-S stretching vibration, L-Tyrosine, lactose 
725 C-H bending vibration, Adenine, coenzyme A 
812 C-C-O stretching vibration, L-Serine, glutathione 
887 C-O-H bending vibration, Glutathione, D-(C)-galactosamine 

1004 C-C symmetric stretch, Phenylalanine 
1073 C-N stretching vibration, Collagen 
1093 C-N stretching vibration, D-Mannos 
1135 C-N stretching vibration, D-Mannos 
1206 Ring vibration, L-Tryptophan, Phenylalanine 
1330 C-H stretching vibration, Nucleic acid bases, D-mannos 
1443 CH2 bending vibration, Glycine, L-Proline, stearic acid 
1581 C = C bending vibration, Phenylalanine, acetoacetate, riboflavin 
1654 C = O stretching vibration, amide-I, α-Helix 

3.3 Analysis of the SERS spectra 

 

Fig. 4. The first twenty PLS components of blood serum SERS spectra: (a) PC 1 to 4 (from left 
to right); (b) PC 5 to 8 (from left to right); (c) PC 9 to 12 (from left to right); (d) PC 13 to 16 
(from left to right); (e) PC 17 to 20 (from left to right). 

The first twenty PLS components and PC scores are derived from 90 blood serum SERS 
spectra based on PLS analysis, and those PLS components are shown in Fig. 4. It can be 
observed that the peaks in those PLS components are in good agreement with the differences 
of Raman spectra among each group as shown in Fig. 3(b), especially for the first several PLS 
components. Thus, the PLS components are expected to capture the most information about 
the differences of Raman spectra among each group. In addition, three PC scores with most 
statistically significant differences are selected by Wilcoxon rank-sum test and plotted in Fig. 
5(a) and (b), i.e., PC1 (p = 0.0032), PC3 (p<0.0001) and PC5 (p = 0.0036) are selected for 
healthy and bladder cancer groups; and PC1 (p = 0.0006), PC6 (p = 0.0331) and PC8 
(p<0.0001) are selected for NMIBC and MIBC groups; in which the PC scores of each group 
tend to be concentrated within certain regions. It can be observed that the bladder cancer 
group shows more extensive distribution than the healthy group in the PC scores scatter plot, 
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which is in good agreement with the results previously reported in paper [20]. The reason 
might be that the proportions of the components, e.g. protein, lipids and glucose, are 
relatively stable in blood serum of healthy people whereas they vary among different cancer 
patients due to the heterogeneity of cancer progress [20]. Furthermore, the linear discriminant 
scores for the final classification are plotted in Fig. 5(c) and (d). These linear discriminant 
scores are derived from the PC scores based on LDA model and excellent separation among 
different groups can be observed. 

 

Fig. 5. 3D scatter plot of PC scores of (a) healthy and bladder cancer groups, (b) NMIBC and 
MIBC groups; Scatter plot of the linear discriminant scores of (c) healthy and bladder cancer 
groups, (d) NMIBC and MIBC groups. 

Table 2 shows the overall classification results of the two-step binary classification 
method. The bladder cancer group was treated as positive while the healthy group was treated 
as negative in the first binary classification, and MIBC group was treated as positive while the 
NMIBC group was treated as negative in the second binary classification. More specifically, 
29 of 30 spectra in the healthy group and 59 of 60 spectra in the bladder cancer group are 
accurately classified in the first binary classification with the accuracy, sensitivity and 
specificity of 97.8%, 98.3% and 96.7%, respectively. In the second binary classification, 26 
of 27 spectra from the NMIBC group and 29 of 32 spectra from the MIBC group are 
accurately identified with the accuracy, sensitivity and specificity of 93.2%, 90.6% and 
96.3%, respectively. Thus, the overall classification accuracy reaches 93.3% for identifying 
healthy, NMIBC and MIBC groups, which is much higher compared to that of conventional 
clinical examinations, such as cystoscopy and bladder imaging. According to the ROC curves 
in Fig. 6, the AUC values are 0.987 and 0.983 for healthy versus bladder cancer groups and 
NMIBC versus MIBC groups, respectively. Such large integration areas further confirm the 
excellent classification performance of the proposed method. Therefore, the SERS technique 
combined with PLS-LDA algorithm based on serum samples has great potential for 
accurately identifying healthy, NMIBC and MIBC patients with high sensitivity and 
specificity. 
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Table 2. The Overall Classification Results of Healthy, NMIBC and MIBC Groups 

Method Group Predicted group Total 

  Healthy NMIBC MIBC  

PLS-LDA 
count (%) 

Healthy 29(96.7%) 1(3.3%) 0(0%) 30(100%) 

NMIBC 1(3.6%) 26(92.8%) 1(3.6%) 28(100%) 

MIBC 0(0%) 3(9.4%) 29(90.6%) 32(100%) 

 

Fig. 6. The ROC curves obtained by using PLS-LDA based classification model between 
healthy and bladder cancer groups, and between NMIBC and MIBC groups. 

4. Conclusions 
In this study, SERS measurements on a small volume of blood serum are used to identify 
healthy, NMIBC and MIBC patients. Biochemical changes, such as the levels of proteins, 
nucleic acids, saccharide and lipids, are observed among different groups, which should be 
closely relevant to the protein catabolism, cell proliferation and metabolic alterations in blood 
serum during bladder cancer progression. By combining with the PLS-LDA method, high 
classification accuracy, sensitivity and specificity can be achieved based on the blood serum 
SERS measurements. The excellent performance of this method has demonstrated its 
potential for fast, accurate, and noninvasive assessment of muscle invasion of bladder cancer. 
Thus, rational therapy plans can be made timely, and the survival rate can be improved 
significantly. 
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